On Quasiconvex Functions Which are Convexifiable or Not

نویسندگان

چکیده

A quasiconvex function f being given, does there exist an increasing and continuous k which makes $$k\circ f$$ convex? How to build such a k? Some words on least convex (concave) functions. The ratio of two positive numbers is neither locally convexifiable nor concavifiable. Finally, some considerations the approximation preorder from finite number observations revealed preference problem are discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Majorization theorem for convexifiable functions

In this paper we extend the majorization theorem from convex to covexifiable functions, in particular to smooth functions with Lipschitz derivative, twice continuously differentiable functions and analytic functions. AMS subject classifications: 26B25, 52A40, 26D15

متن کامل

On Functions Which Are Fourier Transforms

1. Let G be a locally compact and abelian group, Gl the dual group. Through this paper, "Ml will denote the set of all bounded Radon measure n on G; this set will be considered as a Banach algebra when provided with the customary norm as the dual of the space Co(G) defined below and with the ring product defined as convolution. If /iGM1, its Fourier transform is by definition the bounded and co...

متن کامل

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some  inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.

متن کامل

Quasiconvex functions and Hessian equations

In this note we construct new examples of quasiconvex functions defined on the set Sn×n of symmetric matrices. They are built on the k-th elementary symmetric function of the eigenvalues, k = 1, 2, ..., n. The idea is motivated by Šverák’s paper [S]. The proof of our result relies on the theory of the so-called k-Hessian equations, which have been intensively studied recently, see [CNS], [T], [...

متن کامل

Jensen’s Inequality for Quasiconvex Functions

This class of functions strictly contains the class of convex functions defined on a convex set in a real linear space. See [8] and citations therein for an overview of this issue. Some recent studies have shown that quasiconvex functions have quite close resemblances to convex functions – see, for example, [4], [6], [7], [10] for quasiconvex and even more general extensions of convex functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization Theory and Applications

سال: 2021

ISSN: ['0022-3239', '1573-2878']

DOI: https://doi.org/10.1007/s10957-021-01965-1